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ABSTRA CT 

A pose acquisition system operating in 
space must be able to perform well in a variety 
of different applications including automated 
guidance and inspections tasks with many 
different, but known objects. Since the space 
station is being designed with automation in 
mind, there will be CAD models of all the 
objects, including the station itself. The goal 
of our work is to construct vision models 
and procedures directly from the CAD mod- 
els. The system we are designing and imple- 
menting must convert CAD models to vision 
models, predict visible features from a given 
view point from the vision models, construct 
view classes representing views of the object, 
and use the view class model thus derived to 
rapidly determine the pose of the object from 
single images and/or stereo pairs. 

Keywords: matching, view class, CAD model, relational 
pyramid 

1. Introduction 

CAD systems are increasingly becoming an integral 
component of the manufacturing process in the factories and 
plants of the United States. Parts can be designed inter- 
actively and then automatically machined from the newly 
created models. As part of the automation process, some 
manufacturers are buying machine vision systems to inspect 
the machined parts and to provide the three-dimensional 
guidance for robots that handle the parts. Currently, most 
of these systems have to be reprogrammed to recognize 
each new part; this can involve weeks or months of effort, 
depending on the task. Since many manufacturers have the 
CAD models of the parts, the most desirable approach is 
to produce the vision algorithms directly from the CAD 
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models. This approach has already been recognized as 
important, and some preliminary work in the area has been 
done. Examples include the work of Henderson and Bhanu 
at The University of Utah (Henderson et al., 1986) and that 
of Ikeuchi at Carnegie-Mellon (Ikeuchi, 1987). One area 
where vision systems based on CAD models is becoming 
important is in the United States space program. Since the 
space station and space vehicles are recent or even current 
designs, we can expect to have CAD models of these objects 
to work with. Vision tasks in space such as docking and 
tracking of vehicles, guided assembly tasks, and inspection 
of the space station itself for cracks and other problems can 
rely on model-directed vision techniques. 

We are building a computer vision system that uses 
CAD models and other knowledge about the objects it will 
view to generate vision models and vision algorithms. The 
system has two major subsystems: one for offline processing 
and one for online processing. The offline processing sub- 
system will handle the task of converting each of the CAD 
models, which were meant to be used for design and display 
of objects, to a vision model and a procedure that can be 
used to recognize, inspect, or manipulate the object. The 
online processing will use the vision model and procedure 
to perform the inspection/guidance task. 

CAD models range from the standard three-view, ortho- 
graphic engineering drawings to the more recent construc- 
tive solid geometry (CSG) and boundary models produced 
by solid modeling systems. Since there are algorithms for 
converting three views to solid models, we will not consider 
the three view representation, but are working with solid 
modeling systems. The purpose of most solid modeling 
systems is to provide an interactive environment in which 
an engineer can design a part, with procedures by which he 
or she can display the part in different orientations. A few 
systems also produce the specifications for the automatic 
machining of the part. None of these representations is 
suitable to be directly used by a machine vision system. 

A machine vision system needs a model of a part that 
specifies the features by which it can be recognized from 
one or more images. The features that will show up and 
can be extracted from an image are dependent on the 
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view, the material of the objcct, and the lighting setup. 
Machine vision coinpanics t Iiat sell software to customers 
for particular inspection or guidance applications typically 
have programmers and engirirrrs who spend months dcvcl- 
oping the best lighting and optics and the algorithms for 
determining the exact pose of the part and then performing 
the inspection or guidance task. All of the knowledge and 
experience of thcse people is missing in the bare CAD mod- 
els. Thus the offline system must contain enough knowledge 
of lighting and materials and the physics of imaging, that it 
can perform the same task automatically and reliably. 

In our overall design, the input to the offline system 
consists of 1 )  the  CAD model from the geometric modeling 
system, 2) a knowledge base of information on materials, 
lighting, and imaging, in a rule-based form, and 3) the  
specifications for the particular task to  be performed. The 
offline system will transform this information into a vision 
model and a procedure for that  task, to be used by the online 
system. This paper deals with the vision models being 
produced and the matching algorithms that  will use these 
models. The  topics to  be  discussed include 1)  prediction of 
images features from object models, 2) representation of the 
features predicted for a given view and their interrelation- 
ships, 3) generation of viewing clusters, and 4 )  matchine. 
a n  unknown view to the representatives of the view classes 
derived from the clustering. 

2. Predicting Image Features from Object 
Models 

Prediction of image features from object models is 
important in determining the machine vision algorithms 
that  will detect and extract the features and match to  
stored models. Ikeuchi (1987) has included prediction in his 
system that  matches range data  derived from photometric 
stereo. Ponce and Chelberg (1987) have worked out the 
mathematics for predicting the appearance of limbs and 
cusps of generalized cylinders. We have chosen to  work 
with standard geometric modeling systems of the type used 
in computer aided design of industrial parts in order to  
be most compatible with current and potential industrial 
applications. 

There are two major ways of representing three- 
dimensional objects in todays geometric modeling systems. 
Constructive solid geometry (CSG) models are built from 
primitive solids such as spheres, ellipsoids, cylinders, rect- 
angular parallelepipeds, and cones. The  primitive solids are 
combined using operations of union, intersection, and set 
difference to  produce a binary tree structure that  represents 
the object. The  idea is conceptually simple and easy for 
a designer t o  learn. Furthermore, the objects produced 
are guaranteed to  be physically possible three-dimensional 
objects. T h e  tree structures can be used to  generate wire 
frame drawings of the object or, with the use of a ray 

casting procedure, gray tone and color images of different 
views with different lightings. Boundary models represent 
an object by its surfaces and edges. They are more difficult 
to  use for construction of an object, but potentially more 
flexible, since the surfaces and edges may be represented 
by B-splines, allowing much more generality. It is possible 
to  construct a boundary representation (BREP) that  does 
not correspond to  any physically possible object. Boundary 
models can also be used to  generate wire frame, gray tone, 
or color images. 

We are using three different systems in our present 
work. The  first system, Renaissance, is a n  experimental 
CSG modeller being developed by Tony DeRose of the Com- 
puter Science Department a t  the University of Washington. 
This system accepts CSG input and applies ray casting 
to  produce shaded images. It allows spheres, ellipsoids, 
cylinders with spherical or ellipsoidal faces, rectangular 
parallelepipeds, cones, and half planes as primitives. I t  
also allows the user to specify the reflectivity of the  surface 
material and to  include any number of point light sources 
a t  different positions and with different intensities. Ongoing 
research on this system is producing the ability to  specify 
areal light sources of various shapes that  are more realistic 
than the point light sources. We are using this system 
mainly to  generate artificial images for display and for image 
processing. 

The  second system we are using is PADL-2 (Voelcker 
and Requicha, 1977) which was developed a t  Rochester and 
is now being distributed by Cornell University. PADL-2 
is a CSG system, but has the ability to  convert the CSG 
models to  BREP. Since vision systems deal with surfaces 
and edges, this converstion is essential to  our work. PADL-2 
allows spheres, cylinders, rectangular parallelepipeds, cones, 
wedges, and tori as primitives, and it does not have as much 
flexibility as WART in selection of lighting. We are mainly 
using it for fast wire frame drawings of the objects and for 
the conversion to  BREP. 

The  third system we are using is CATIA, a joint venture 
of IBM and Dassault. CATIA can produces a BREP 
with not only simple surfaces and curves, but also B-spline 
surfaces and curves. Although we cannot access the CATIA 
system ourselves, we will be given data  from that  system 
via IGES format tapes. 

The  prediction work consists of extracting data  from 
various geometric modeling systems, storing it in a three- 
dimensional vision model of our own design, and using the 
vision model to  predict the features that will appear in 
images. T h e  extraction process is merely a programming 
task, made difficult or easy by the particular system from 
which the data  must come. The  vision model we are 
currently using is $how in Figure 1 .  It is a variation of the 
hierarchical, relational structure we designed for collision 
avoidance and matching several years ago (Shapiro and 
Haralick, 1984). T h e  basic data  structures employed are 
the relational data structure, which represents entities, and 
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' i l  among entitirs. A relational data structure is a set of 
named relations. Each relation is a set of N-tuples for 
some positivr integer N .  The components of an N-tuple may 
be atomic or may themsclves be relational data structures. 
Each relational data structure has one distinguished relation 
called the attribute-value table. The attribute-value table 
stores the values associated with global attributes of the 
entity represented by the relational data structure. The 
other relations often depict thc relationships among the 
primitive pieces of the entity. 

The entities shown in Figure 1 are the world, the object, 
the face, the boundary, the simple arc, the compound arc, 
the simple surface and the compound surface. The world 
is made up of objects. The Objects Relation, which is a 
part of the World Relational Data Structure, is a list of 
the objects in the world. Each object in the list has a 
name, a type, a pointer or reference to the relational data 
structure for that object, and a transformation that can 
be applied to the points of the object to position it in the 
world. The attribute-value table of the world contains global 
information about the world, including, but not limited to 
the bounding box shown in the figure. An object has a set of 
faces and two important relations that embody the topology 
of the object. The Edge/Surface Topology Relation is a list 
of the three-dimensional (and possibly curved) edges of the 
object. Each edge in this relation is associated with its 
two endpoints, the faces to its left and right, the arcs that 
represent the edge in the boundaries of the two faces, and 
the angle between the two faces (or an approximation if 
they are not planar). The Vertex Relation is a list of three- 
dimensional vertices. Each vertex has associated a name, 
a location, a list of edges that meet a t  that vertex, and a 
transformation. 

Conceptually, a face has a surface equation or equations 
and a set of boundaries that tell what portions of the surface 
actually belong to the face. These boundaries are listed in 
the Boundaries Relation, and the surface is referenced as the 
value of the Surface attribute in the attribute-value table 
of the face. This is consistent, because the face has only 
one surface, but it has a set of boundaries. Each boundary 
is a list of arcs, which can be simple (represented by an 
equation) or compound (represented by a Compound Arc 
Relational Data Structure which itself has an Arcs Relation 
or list of arcs). Similarly, surfaces are either simple surfaces 
or Compound Surface Relational Data Structures. At all 
levels of the structure, entities have associated transforma- 
tions and bounding boxes. 

We h a w  used data structures of this general form 
for model-based vision system and geographic informa- 
tion systems and have found them to be very flexible and 
very natural representations of complex structures. The 
particular variant discussed here stores all the information 
usually found in any BREP plus the topological information 
that can help generate constraints for matching in a vision 
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Figure 1 illustrates the relational data structure for 
a three-dimensional vision model. 

system. Later in the work, inspection specifications and 
other attributes will be added to the models. 

Given a relational data structure representing a three- 
dimensional object, the goal of the prediction module is 
to predict the features of that object that will appear 
in an image of the object from a given viewpoint and 
wit4 a given set of light sources. Visible features can 
consist of edges between separate surfaces of the object, 
limbs (loci of points where the line of sight is tangent 
to the surface), corners, holes, imprinted characters, and 
anything else we might be able to detect with low- and 
mid-level vision algorithms. Our initial system will predict 
edges and limbs that should appear in an image of the 
object from a particular viewpoint and independent of the 
lighting. The result will be similar to a wire-frame rendering 
of the object, and the algorithms used will be variations 
of standard hidden line/hidden surface algorithms used 
to produce wire-frames. The main difference will be the 
maintenance of the relationships between the predicted two- 
dimensional structures and the three-dimensional entities 
which produced them. This information will be used later 
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in the pose estimation procedures. 
We are currently beginning the implementation of this 

part of the system. We have derived the equations of the 
limbs for the simple CSG primitives (ellipsoid, cylinder, and 
cone) in closed form. Yet to  be derived are the equations 
and procedures for working with B-spline data. The  next 
step is t o  investigate and characterize the reasons that  an 
edge or a limb may not show up  in a n  image a t  all. Not 
enough contrast between two surfaces due to  illumination or 
even the color and patterns of the surfaces and not enough 
difference in the orientations of the two surfaces are  some 
of the possible causes. 

3. Representation of Features 

The prediction system will generate the features that 
appear in a given view, and those views that  produce similar 
features will be grouped together as one viewing cluster. 
In order t o  decide if two views are  similar enough to  be 
grouped together, we need a representation for the features 
and their interrelationships. This representation should be 
simple enough that  the primitive features can be  easily 
accessed and complicated enough that powerful high-level 
relationships can be represented. This suggests a pyramid 
structure where simple primitives are represented a t  the 
bottom level, and the succeeding levels represent more and 
more complex relationships among the  primitives. Thus the 
view depicted by this structure can be dealt with a t  any level 
of complexity desired. The  structure is formally defined as 
follows. 

Let F be  a set of detectable primitive features. Each 
feature f E F has an associated type T f  and a vector 
of attributes A,. A relational pyramid of height h over 
feature set F is a sequence of h relational descriptions 
(Do, D1,. . . , Dh-1). Description Do is a sequence of no re- 
lations < @, . . . , R:o >, each relation representing one of 
the primitive types. A pair (f, A f )  belongs to  relation RP if 
f E F is a primitive feature of the type represented by R: 
and A,  is its vector of attributes. Intuitively, a t  level 0 of 
the relational pyramid, each feature is associated with its 
attributes and is classified as one of several different legal 
types. 

Description D1 is a sequence of relations < R!, . . . , R,!,, > 
where each relation Rf represents a relationship among 
two or more of the level-0 primitives. An attributed 
tuple of one of these level-1 relations Rf has the form 
((NI, t l ) ,  . . . , (N, ,  t,), A )  where each N, is the name of a rela- 
tion Rk, at level 0, and the corresponding t ,  is a tuple of RL,. 
The semantics of ((Nl,t l) ,  . . . , ( iVn,tn),A) E Rf is that the 
level-0 attributed primitives ( t l ,  . . . , tn) which are of types 
( N 1 , .  . . , Nn), are related according t o  the level-1 relation- 
ship R:, and this level-I relationship has attribute vector A. 
This idea can then be extended up  the pyramid. At level k, 
description D1: is a sequence of relations < Rf,  ..., REk >, 

where each relation represents a rclationship among two 
or more of the entitities from level 0 to  level k - 1. (In the  
strictest kind of pyramid, they would all he from level k-1.) 
An attributed tuple of such a level-k relation Rt; has the 
form ((N1,tl) ,..., (N,,t,),A) where each N, is the name 
of a relation R$, a t  a previous level k' and t ,  E R$, for 
j = 1, .  . . ,n. T h e  semantics of ( ( N l , t I ) , .  . . , ( N , , t , ) , A )  E R: 
is that the attributed primitives ( t l , .  . . , tn) which come from 
levels 0 to  k-1 and which are of relational types (N1,.  . . , N , )  
are related according to the level-k relationship Rf and this 
level-k relationship has attribute vector A .  

Thus the relational pyramid structure allows us to  define 
an object by its attributed primitives, relationships among 
those primitives, relationships among those relationships, 
and so on up to some predefined maximal level. It is 
a hierarchical, relational structure, but the hierarchy is 
defined on relationships instead of on larger and larger pieces 
of the object. Having formally defined the structure, we will 
now show how it can be used to  describe a view or a view 
class of a three-dimensional object. 

The  level-0 primitives in our current system are straight 
and curved line segments. Thus in our formalism, Do = < 
straightsegments, curvedsegments > . The attribute vector 
for a straight line segment contains its starting point and 
its ending point, and the attribute vector for a curved 
line segment contains its starting point, its ending point, 
and an interior point which is used in later calculations of 
relationships. 

The  level-I relations represent junctions where two or 
three segments meet. (This will later be extended to  multi- 
segment junctions.) For junctions where only straight lines 
meet, we use the standard junction types FORK, ARROW, 
T, and L. Because we wish to  distinguish between the 
separate lines of each junction, we define a numbering 
scheme that  selects the  first line in each junction as the 
one closest to  vertical and then numbers the remaining lines 
consecutively in clockwise order. 

For junctions including a t  least one curved line, we chose 
to  define a new labeling scheme that helps us to  build 
up relations a t  the next level of the pyramid. (For a n  
alternate labeling scheme for junction with curves, where 
junction types represent 3D information rather than just 
2D configurations, see Chakravarty (1979).) In our current 
scheme, a curved segment is considered concave (A) or 
convex (V) depending on the way it faces the segment 
previous to  it in a clockwise ordering of the segments. (Since 
our curve segments come from spheres, cylinders, and cones, 
they will not have inflection points.) The  first segment in a 
junction with a straight line segment and one or two curved 
line segments is defined to  be the straight line segment. The  
first segment in a junction with two straight line segments 
and one curved line segment is the straight line segment 
counterclockwise from the curved segment. If there are no 
straight lines, the curved segment whose chord joining its 
s tar t  and end points is closest t o  vertical will be  considered 



the first segment. T h e  label of a junction then dcpcntls 
on the labels of the two or three segments comprising it, 
in the ordering in which they are  numhered. For example, 
LA is the label of a junction where a straight line segmont 
connects to  a concave curve segment, while LAV is the 
label of a junction where a straight line segment is followed 
(in clockwise order) by a concave curve segment which is 
followed by a convex curve segment. 

The  relations currently implemented a t  level 1 of the 
pyramid represent each of the junction types just described. 
The  LOOP relation, which is also being implemented, con- 
sists of sets of segments that  together form a minimal closed 
boundary. Other feasible level-1 relations for view classes 
would be parallel line segments, colinear line segments, and 
such spatial relations as above, below, left-of, and right-of 
(when they are invariant for all views in a view class). 

The  level-2 relations use level-1 tuples representing at- 
tributed junctions and loops and level-0 tuples representing 
line and curve segments as their primitives. The relations 
currently being implemented a t  level 2 are  PARALLEL, 
ANTIPARALLEL, REVERSE, COLINEAR, ADJACENT, 
and INSIDE. Because these relations are being defined on 
junctions rather than on line segments, they have special 
definitions. 

The  PARALLEL relation consists of attributed sets 
of parallel junctions. Two straight line junctions J1 = 
( 1 1 , 1 2 , .  . .,In) and Jz = ( l ; ,  l;, . . . , Pm), n 5 m, are parallel if 
there is a n  order preserving injection f : J1  - J2 satisfying 
parallel(Zi, f ( l i ) ) ,  i = 1,. . . , n. Two arbitrary junctions 
J 1  = ( 1 1 , 1 2 , .  . . , In) and Jz  = ( l i ,  14,. . . , lh) are parallel if the 
nonempty subsequences IC1 c J l  and IC, E Jz  consisting of 
only the straight lines are  parallel, where the number of 
straight lines is greater than one. 

While two ARROW junctions may be parallel, it is 
impossible for a FORK junction and a n  ARROW junc- 
tion to  be  parallel, since one line segment of the FORK 
will point in the opposite direction as the corresponding 
line segment of the  ARROW. Yet this relationship is also 
important in describing the line drawing as a whole. For 
this reason, we define the ANTIPARALLEL and REVERSE 
relations as follows. Two straight line junctions J1 and 
J 2  are antiparaIle1 if there is a function f : J1 + Jz  
satisfying parallel(&, f ( l i ) )  or antiparallel(&, f ( 1 i ) ) .  Two 
straight line junctions are  reverse if they are antiparallel 
and if antiparallel(li,f(li)) is true for exactly one pair of 
corresponding segments. Two junctions are antiparallel (or 
reverse) if the  nonempty subsequences consisting of only 
straight lines and consisting of a t  least two straight lines 
are antiparallel (or reverse). In our implementation, the 
REVERSE relation corresponds to  this definition of reverse, 
and the ANTIPARALLEL relation corresponds to  pairs of 
junctions that  are  antiparallel, but not reverse. 

The  COLINEAR relation consists of attributed sets of 
colinear junctions. Two junctions are considered colinear if 

tlicy arc  parallel, antiparallrl, or rcverse and there is one 
pair of corresponding ctlgcs which satisfy t,he same linear 
equation. The  AD.JACI:N‘T rcla.t.ion consisk of pairs of 
junctions which are directly conncctetl t,o each other by 
a common scgmrnt. If ahovc, I)clow, ]&of, and right- 
of are invariant across a. view class, thcse can be used as 
attributes to  the adjacency of t l i c  junctions. Finally the 
INSIDE relation consists of a level-0 primitive and a level- 
1 loop, where the primitive lies inside the loop. Figure 
2 illustrates these concepts for one view class of a three- 
dimensional object . 

Figure 2a illustrates the line drawing representing 
a view class of a machined part object. 

4. Constructing Viewing Clusters 

A view class model of a n  object consists of a set of 
characteristic views of that  object, represented by a suitable 
data  structure. In his range-data-oriented system, Ikeuchi’s 
view classes are  the aspects of the object. Two views are  
part of the same view class if all the  same surfaces a re  
visible in each of them. While this is a very reasonable 
approach for range data ,  where segmentation into surfaces 
is relatively easy, it is not reasonable for intensity images of 
complex parts, where it may be very difficult to accurately 
segment into individual surfaces. Korn and Dyer suggested 
that the view classes could be constructed by considering a 
large number of views around a tesselated Gaussian sphere 
and grouping together those that  share some property. T h e  
important question here is what that  property might be. 

The  most reliable features that  can be automatically 
extracted from intensity images are still line segments: both 
straight and curved. If we apply Ikeuchi’s thinking to  Korn 
and Dyer’s suggestions, we would say that  two views belong 
to  the same cluster if the same line segments are  visible in 
both. But, even under conditions where background and 
lighting are  carefully controlled, one can still expect some 
missing or extra line segments due t o  effects of illumination 
and other environmental factors. Thus two line drawings of 
an object, taken from approximately the same viewpoint, 
may be a little bit different. Furthermore, there may be a 
set of viewpoints which all produce similar, but not identical 
line drawings, and which we would like to  group together _ . -  

in order to  control the number of view classes. All of this 
ORIGINAL PAGE 
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LEVEL 1: 

Figure 2b illustrates the pyramid structure for 
the view class shown in Figure 2a with attribute 
information suppressed for simplicity. 

suggests that two views belong in the same view class if 
their relational distance (Shapiro and Haralick, 1985) is 
similar enough. Thus finding view classes consists of finding 
relational distances between pairs of pyramid structures 
representing view points selected from a tesselated Gaus- 
sian sphere and clustering them, based on these relational 
distances. This is all part of the offline processing of the 
object. 

5. Matching Unknown Views to View 
Class Descriptions 

When an image is taken of a known 3D object from an 
unknown view, the first step before inspection or guidance 
is to determine the pose (position and orientation) of the 
object. To achieve this with a view class model, the vision 
system must first determine the correct view class, find the 
correspondences between the features extracted from the 
image and those in the view class representation, use the 

links between 3D features and view class features to find the 
correspondence between extracted features and 3D features, 
and use this correspondence to find the pose of the object. 

It is desirable to determine the correct view class its 

rapidly as possible. Chakravarty and Freeman (1982) rep- 
resented a view class by a vector containing the number of 
junctions of each junction type. They used the values in 
the vector to select the best view class, relying especially on 
the most frequent junction type. We feel that this approach, 
while simple and rapid, will not work very well when some of 
the segments do not show up in the image, causing missing 
or erroneous junction types, or when extra segments appear 
in the image. Ikeuchi (1987), using range data, created 
an interpretation tree during his offline processing phase. 
The interpretation tree was a decision tree used to select 
the best view class, depending on the values of various 
measurements. We will consider this approach in the future, 
but initially, we are trying a simple idea based on the Hough 
transform, which we consider promising. 

Suppose each view class is represented by a rela- 
tional pyramid structure. For each relational pyramid, we 
can easily derive a s u m m a r y  p y r a m i d  structure. Where 
the relational pyramid has a relation R with c tuples 

summary pyramid has a corresponding relation R with a 
single tuple ((Nl, N,, . . . ,N,,), c) representing those c tuples. 
For example, if the parallel relation has 4 tuples of the form 
( ( F O R K , f ) ,  (ARROW,a) ) ,  then the parallel summary re- 
lation has one tuple ( (FORI f ,ARROW) ,4 ) .  This is done 
for each relation and a t  each level of the pyramid. At level 
0, the summary is just the count c of how many primitive 
features there are of each type. Figure 3 illustrates the 
summary structure for the relational pyramid of Figure 2b. 
Note that we have simplified the level-1 summary structures 
for readability. The names of these level-1 relations actually 
indicate the types of the primitives. 

Along with the original relational pyramid structures 
and the summary structures, the online system requires one 
more structure to be produced by the offline system: the 
i d e s  structure. The index allows direct access, given a 
summary tuple of the form ( ( N l , N 2 , . . . , N n ) , c ) l  to a list 
of all view classes that have this tuple in their summary 
structures. It keeps an evidence accumulator for each view 
class, initialized to zero. For exact matching, the online 
system would traverse the summary structure derived from 
the unknown view, and for each tuple in the summary 
structure, it would add one to the accumulators of all the 
view classes on the list attached to that tuple in the index. 
The view class or classes with maximal evidence would be 
selected. 

Exact matching will produce erroneous results, due to 
missing and extra segments. Our current solution is to 
actually model the "erroneous" views associated with a view 
class, producing a separate summary for each. We also 
associate a probability with each perfect and each erroneous 

{((NI 7 t ~ , , ) ,  ( N , ,  t z , j ) ,  . . ., ( N n ,  tn,, )> A )  I .i = 1, . . ., CI 1 the 
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Figure 3 illustrates a summary structure for the 
relational pyramid of Figure 26. 

view; the probabilities are now chosen by the experimenter, 
but will eventually come from the prediction module. Using 
the summary matching described above with the enlarged 
set of summaries, we can select one or more view classes. A 
Bayesian analysis will then tell us which is the most probable 
view. 

Once a view class has been selected, we must determine 
the correspondence between the primitives of its relational 
pyramid and those of the unknown view’s relational pyra- 
mid. Since the  relational pyramid structure is a highly 
constrained, relational representation of a view class or view, 
we expect that  a backtracking tree search, using discrete 
relaxation, will be able to  rapidly find the best mapping 
from view class structure to  view structure. In particular, 
the  higher-level relations are  expected to  aid in efficient 
pruning of the tree. Furthermore, it is not necessary t o  
find a correspondence for every primitive feature of a view 
class. We need only find enough correspondences to  reliably 
compute the pose of the object. 

6 .  Summary 
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